Analysis of Dynamic Stability of Nonlinear Suspension concerning Slowly Varying Sprung Mass
نویسندگان
چکیده
منابع مشابه
Dynamic Stability Analysis of a Beam Excited by a Sequence of Moving Mass Particles
In this paper, the dynamic stability analysis of a simply supported beam carrying a sequence of moving masses is investigated. Many applications such as motion of vehicles or trains on bridges, cranes transporting loads along their span, fluid transfer pipe systems and the barrel of different weapons can be represented as a flexible beam carrying moving masses. The periodical traverse of masses...
متن کاملdynamic coloring of graph
در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...
15 صفحه اولStability of the Modified Euler Method for Nonlinear Dynamic Analysis of TLP
Efficiency of numerical methods is an important problem in dynamic nonlinear analyses. It is possible to use of numerical methods such as beta-Newmark in order to investigate the structural response behavior of the dynamic systems under random sea wave loads but because of necessity to analysis the offshore systems for extensive time to fatigue study it is important to use of simple stable meth...
متن کاملA Criterion for Stability of Nonlinear Time-Varying Dynamic System
In this paper, based on the assumption that both the leading principal submatrix of r-order and its complementary submatrix in A(t) have eigenvalues with only negative real parts, we establish a criterion for the stability of a class of nonlinear time-varying dynamic system dx/dt = A(t)x+ f(t, x). Also a feasible method for decomposition and aggregation of large-scale system is provided. Moreov...
متن کاملOn a Stability Property of Nonlinear Systems with Periodic Inputs Having Slowly Varying Average
It is known that, if an equilibrium of a nonlinear system has a stability property when an external input is frozen, then the property is maintained under the input being slowly varying. In this paper, we show that the same stability property is preserved not only under slowly varying input but also under slowlyvarying-average input (which is not actually slowly varying but its ‘average’ is slo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Shock and Vibration
سال: 2017
ISSN: 1070-9622,1875-9203
DOI: 10.1155/2017/5341929